Influence of hydration water on CH3NH3PbI3 perovskite films prepared through one-step procedure

نویسندگان

  • ZIYI WANG
  • SIJIAN YUAN
  • DAHAI LI
  • FENG JIN
  • RONGJUN ZHANG
  • YIQIANG ZHAN
  • MING LU
  • SONGYOU WANG
  • YUXIANG ZHENG
  • JUNPENG GUO
  • ZHIYONG FAN
  • LIANGYAO CHEN
چکیده

Organic-inorganic perovskites were fabricated through a one-step procedure with different levels of hydration water in precursor solutions. The optical properties of CH3NH3PbI3 films were investigated through spectroscopic ellipsometry and photoluminescence measurements. With the measured optical constants, the efficiency limit of perovskite solar cells is predicted with a detailed balance model. By comparing the optical measurement to that of planar heterojunction solar cells, we conclude that the radiative efficiency and porosity of the perovskite film significantly influence the performance of perovskite solar cells. An optimized hydration-water concentration is obtained for the 3CH3NH3I:1PbAc2•xH2O precursor solution. The results can provide guidance for further optimization of the device performance of perovskite solar cells by utilizing hydration water. © 2016 Optical Society of America OCIS codes: (310.6860) Thin films, optical properties; (160.0160) Materials; (350.6050) Solar energy. References and links 1. A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,” J. Am. Chem. Soc. 131(17), 6050–6051 (2009). 2. M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 46),” Prog. Photovolt. Res. Appl. 23(7), 805–812 (2015). 3. Y. Zhao, M.-Y. Sheng, W.-X. Zhou, Y. Shen, E.-T. Hu, J.-B. Chen, M. Xu, Y.-X. Zheng, Y.-P. Lee, D. W. Lynch, and L. Y. Chen, “A solar photovoltaic system with ideal efficiency close to the theoretical limit,” Opt. Express 20(1), A28–A38 (2012). 4. E. D. Kosten, J. H. Atwater, J. Parsons, A. Polman, and H. A. Atwater, “Highly efficient GaAs solar cells by limiting light emission angle,” Light Sci. Appl. 2(1), e45 (2013). 5. Z. Y. Wang, R. J. Zhang, S. Y. Wang, M. Lu, X. Chen, Y. X. Zheng, L. Y. Chen, Z. Ye, C. Z. Wang, and K. M. Ho, “Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays,” Sci. Rep. 5, 7810 (2015). 6. M. Filipič, P. Löper, B. Niesen, S. De Wolf, J. Krč, C. Ballif, and M. Topič, “CH3NH3PbI3perovskite / silicon tandem solar cells: characterization based optical simulations,” Opt. Express 23(7), A263–A278 (2015). 7. G. Niu, X. Guo, and L. Wang, “Review of recent progress in chemical stability of perovskite solar cells,” J. Mater. Chem. A Mater. Energy Sustain. 3(17), 8970–8980 (2015). 8. W. Nie, H. Tsai, R. Asadpour, J.-C. Blancon, A. J. Neukirch, G. Gupta, J. J. Crochet, M. Chhowalla, S. Tretiak, M. A. Alam, H. L. Wang, and A. D. Mohite, “Solar cells. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains,” Science 347(6221), 522–525 (2015). 9. M. Liu, M. B. Johnston, and H. J. Snaith, “Efficient planar heterojunction perovskite solar cells by vapour deposition,” Nature 501(7467), 395–398 (2013). Vol. 24, No. 22 | 31 Oct 2016 | OPTICS EXPRESS A1431 #273045 http://dx.doi.org/10.1364/OE.24.0A1431 Journal © 2016 Received 9 Aug 2016; revised 19 Sep 2016; accepted 21 Sep 2016; published 30 Sep 2016 10. K. Fu, C. T. Nelson, M. C. Scott, A. Minor, N. Mathews, and L. H. Wong, “Influence of void-free perovskite capping layer on the charge recombination process in high performance CH3NH3PbI3 perovskite solar cells,” Nanoscale 8(7), 4181–4193 (2016). 11. Q. Chen, H. Zhou, Z. Hong, S. Luo, H.-S. Duan, H.-H. Wang, Y. Liu, G. Li, and Y. Yang, “Planar heterojunction perovskite solar cells via vapor-assisted solution process,” J. Am. Chem. Soc. 136(2), 622–625 (2014). 12. P. W. Liang, C. Y. Liao, C. C. Chueh, F. Zuo, S. T. Williams, X. K. Xin, J. Lin, and A. K. Y. Jen, “Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells,” Adv. Mater. 26(22), 3748–3754 (2014). 13. J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature 499(7458), 316–319 (2013). 14. M. Xiao, F. Huang, W. Huang, Y. Dkhissi, Y. Zhu, J. Etheridge, A. Gray-Weale, U. Bach, Y. B. Cheng, and L. Spiccia, “A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells,” Angew. Chem. Int. Ed. Engl. 53(37), 9898–9903 (2014). 15. W. Zhang, M. Saliba, D. T. Moore, S. K. Pathak, M. T. Hörantner, T. Stergiopoulos, S. D. Stranks, G. E. Eperon, J. A. Alexander-Webber, A. Abate, A. Sadhanala, S. Yao, Y. Chen, R. H. Friend, L. A. Estroff, U. Wiesner, and H. J. Snaith, “Ultrasmooth organic-inorganic perovskite thin-film formation and crystallization for efficient planar heterojunction solar cells,” Nat. Commun. 6, 6142 (2015). 16. L. Ling, S. Yuan, P. Wang, H. Zhang, L. Tu, J. Wang, Y. Zhan, and L. Zheng, “Hydration water improved organic-inorganic perovskite layer for efficient planar solar cell,” Adv. Funct. Mater. in press. 17. E. Wei, X. Ren, L. Chen, and W. C. Choy, “The efficiency limit of CH3NH3PbI3 perovskite solar cells,” Appl. Phys. Lett. 106(22), 221104 (2015). 18. M. Shirayama, H. Kadowaki, T. Miyadera, T. Sugita, M. Tamakoshi, M. Kato, T. Fujiseki, D. Murata, S. Hara, T. N. Murakami, S. Fujimoto, M. Chikamatsu, and H. Fujiwara, “Optical transitions in hybrid perovskite solar cells: ellipsometry, density functional theory, and quantum efficiency analyses for CH3NH3PbI3,” Phys. Rev. Appl. 5(1), 014012 (2016). 19. P. Löper, M. Stuckelberger, B. Niesen, J. Werner, M. Filipič, S.-J. Moon, J.-H. Yum, M. Topič, S. De Wolf, and C. Ballif, “Complex refractive index spectra of CH3NH3PbI3 perovskite thin films determined by spectroscopic ellipsometry and spectrophotometry,” J. Phys. Chem. Lett. 6(1), 66–71 (2015). 20. X. Ziang, L. Shifeng, Q. Laixiang, P. Shuping, W. Wei, Y. Yu, Y. Li, C. Zhijian, W. Shufeng, D. Honglin, Y. Minghui, and G. G. Qin, “Refractive index and extinction coefficient of CH3NH3PbI3 studied by spectroscopic ellipsometry,” Opt. Mater. Express 5(1), 29–43 (2015). 21. J. M. Ball, S. D. Stranks, M. T. Hörantner, S. Hüttner, W. Zhang, E. J. Crossland, I. Ramirez, M. Riede, M. B. Johnston, R. H. Friend, and H. J. Snaith, “Optical properties and limiting photocurrent of thin-film perovskite solar cells,” Energy Environ. Sci. 8(2), 602–609 (2015). 22. J.-S. Park, S. Choi, Y. Yan, Y. Yang, J. M. Luther, S.-H. Wei, P. Parilla, and K. Zhu, “Electronic structure and optical properties of α-CH3NH3PbBr3 perovskite single crystal,” J. Phys. Chem. Lett. 6(21), 4304–4308 (2015). 23. C.-W. Chen, S.-Y. Hsiao, C.-Y. Chen, H.-W. Kang, Z.-Y. Huang, and H.-W. Lin, “Optical properties of organometal halide perovskite thin films and general device structure design rules for perovskite single and tandem solar cells,” J. Mater. Chem. A Mater. Energy Sustain. 3(17), 9152–9159 (2015). 24. A. M. A. Leguy, P. Azarhoosh, M. I. Alonso, M. Campoy-Quiles, O. J. Weber, J. Yao, D. Bryant, M. T. Weller, J. Nelson, A. Walsh, M. van Schilfgaarde, and P. R. F. Barnes, “Experimental and theoretical optical properties of methylammonium lead halide perovskites,” Nanoscale 8(12), 6317–6327 (2016). 25. H. Zhou, Q. Chen, G. Li, S. Luo, T. B. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu, and Y. Yang, “Photovoltaics. Interface engineering of highly efficient perovskite solar cells,” Science 345(6196), 542–546 (2014). 26. G. E. Eperon, S. N. Habisreutinger, T. Leijtens, B. J. Bruijnaers, J. J. van Franeker, D. W. deQuilettes, S. Pathak, R. J. Sutton, G. Grancini, D. S. Ginger, R. A. Janssen, A. Petrozza, and H. J. Snaith, “The importance of moisture in hybrid lead halide perovskite thin film fabrication,” ACS Nano 9(9), 9380–9393 (2015). 27. H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications (John Wiley and Sons, 2007). 28. R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86(23), 235147 (2012). 29. D. Zhang, B. Shen, Y. Zheng, S. Wang, J. Zhang, S. Yang, R. Zhang, L. Chen, C. Wang, and K. Ho, “Evolution of optical properties of tin film from solid to liquid studied by spectroscopic ellipsometry and ab initio calculation,” Appl. Phys. Lett. 104(12), 121907 (2014). 30. L. Jian and C. Jie, “Broadening of optical transitions in polycrystalline CdS and CdTe thin films,” Appl. Phys. Lett. 97(18), 181909 (2010). 31. J.-P. Xu, R.-J. Zhang, Y. Zhang, Z.-Y. Wang, L. Chen, Q.-H. Huang, H.-L. Lu, S.-Y. Wang, Y.-X. Zheng, and L.-Y. Chen, “The thickness-dependent band gap and defect features of ultrathin ZrO2 films studied by spectroscopic ellipsometry,” Phys. Chem. Chem. Phys. 18(4), 3316–3321 (2016). 32. Z.-Y. Wang, R.-J. Zhang, H.-L. Lu, X. Chen, Y. Sun, Y. Zhang, Y.-F. Wei, J.-P. Xu, S.-Y. Wang, Y.-X. Zheng, and L. Y. Chen, “The impact of thickness and thermal annealing on refractive index for aluminum oxide thin films deposited by atomic layer deposition,” Nanoscale Res. Lett. 10(1), 46 (2015). 33. R.-J. Zhang, Y.-M. Chen, W.-J. Lu, Q.-Y. Cai, Y.-X. Zheng, and L.-Y. Chen, “Influence of nanocrystal size on dielectric functions of Si nanocrystals embedded in SiO2 matrix,” Appl. Phys. Lett. 95(16), 161109 (2009). Vol. 24, No. 22 | 31 Oct 2016 | OPTICS EXPRESS A1432

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CH3NH3PbI3 perovskite single crystals: surface photophysics and their interaction with the environment.

Here we identify structural inhomogeneity on a micrometer scale across the surface of a CH3NH3PbI3 perovskite single crystal. At the crystal edge a local distortion of the crystal lattice is responsible for a widening of the optical bandgap and faster photo-carrier recombination. These effects are inherently present at the edge of the crystal, and further enhanced upon water intercalation, as a...

متن کامل

Loading of mesoporous titania films by CH3NH3PbI3 perovskite, single step vs. sequential deposition.

Infiltration of mesoporous TiO2 scaffolds by CH3NH3PbI3 is more complete when using sequential compared to single step deposition processing and avoids formation of disordered capping layers affording greatly improved performance of perovskite based photovoltaics.

متن کامل

Nonstoichiometric acid–base reaction as reliable synthetic route to highly stable CH3NH3PbI3 perovskite film

Perovskite solar cells have received worldwide interests due to swiftly improved efficiency but the poor stability of the perovskite component hampers the device fabrication under normal condition. Herein, we develop a reliable nonstoichiometric acid-base reaction route to stable perovskite films by intermediate chemistry and technology. Perovskite thin-film prepared by nonstoichiometric acid-b...

متن کامل

Fabrication of efficient planar perovskite solar cells using a one-step chemical vapor deposition method

Organometallic trihalide perovskites are promising materials for photovoltaic applications, which have demonstrated a rapid rise in photovoltaic performance in a short period of time. We report a facile one-step method to fabricate planar heterojunction perovskite solar cells by chemical vapor deposition (CVD), with a solar power conversion efficiency of up to 11.1%. We performed a systematic o...

متن کامل

Direct Observation of Long Electron-Hole Diffusion Distance in CH3NH3PbI3 Perovskite Thin Film

In high performance perovskite based solar cells, CH3NH3PbI3 is the key material. We carried out a study on charge diffusion in spin-coated CH3NH3PbI3 perovskite thin film by transient fluorescent spectroscopy. A thickness-dependent fluorescent lifetime was found. By coating the film with an electron or hole transfer layer, [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) or 2,2',7,7'-tetrakis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016